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1. Designing Web Programs

Nowadays, many Web pages are generated on demand. One pageeda
the current time and date; another page may include resuolts & database
query; a third page may display the current status of theese8ince such
programs compute small amounts of information and prodaetenuch more
than a single Web page, people call thecnipts

Following a long-standing tradition in computing, Web pting has
grown up. These scripts have now turned into serious, magdgprograms
that sometimes represent thaison d'étre of a commercial establishment.
Consumers can find on-line stores, e-mail clients, interagames, and
more implemented with a Web interface. In other words, mdtef writing
Web scripts programmers now design, implement, and maintain inteeact
Webprogramswith complex and multi-layered interface protocols. Thai§,
the usual software engineering concerns about evolvingtaiaable code to
match growing requirement specifications apply.

Furthermore, the designers of complex, interactive sesic Web pro-
grams face an additional software engineering problem wisémg existing
technology. Most dialogs consist of many interactions, iehesach interac-
tion presents a form and processes the user’s response.veio@@mmon
Gateway Interface (CGI) [33] programs halt after procegsirsingle form.
Similarly, Java servlets [12] and Java Server Pages [39] mespond with
a single page and then terminate, in response to a singledtiten with
the user. That is, all widely used Web technologies suffemfithe same
problem: the program’s control information is erased bemvénteractions
with the user.

To force the interactive nature of programs into the Web mogning
mold, an interaction is implemented by having a script dgli&® Web page,
wait for the consumer to submit a response, and then probasseasponse
with a(nother) script. Further complicating matters, thebAprograms must
accommodate consumers who backtrack in their interactioltsme their
browser windows, re-submit the same or different answersafty given
form, and so on. In short, a Web program and a consumer makepar a
of coroutines where each interaction point can be resuankirarily often.
However, due to the lack of these multiply-resumable conest or simi-
lar constructs in common Web programming languages, thigmgscannot
match the structure of the interaction with the structurehef program. In-
deed, maintaining control information properly is a gehprablem when the
interface to a program is a Web browser. It results in prognams setting up
ad hoc mechanisms to save and restore control state thaiffiealidto de-
velop, maintain, or explain to colleagues. Even sessionagament features
built in to various languages designed for generating Wedepanly solve
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the easier half of the problem, automatically saving vdediindings but not
control state.

In this paper, we show that Web programmers can use existiftgyyare
engineering methods to develop interactive programs aadvilell-known,
algorithmic transformations can generate standard CQptscfrom these
programs. Specifically, we extend a programming languagé wiprimi-
tive for Web interactions and show how this extension sifigdithe design,
development, and maintenance of interactive Web progréms; it allows
programmers to migrate legacy programs to the Web; how thatieg pro-
grams manage the two kinds of information flows found in Welgpams;
and how we can adapt existing programming environmentsppat of this
development style.

The remainder of this paper is organized as follows. Thersc@ction
of this paper is a brief introduction to conventional Webgraomming. The
third section presents the central ideas of the paper: theammstruct, its
implementation for a minimal core Scheme [31] dialect, amgvho use
the same implementation technique in languages withoutr8els advanced
control constructs. The fourth section illustrates thaewNVeb programs are
just interactive programs, programmers can develop, &, debug them
in ordinary programming environments, enriched with a $mai-time ex-
tension. The fifth section outlines how we have implementedideas in
PLT Scheme [19], so that we can test each development stégesiXth
section discusses related work. In the seventh section metuate and discuss
a few areas of future research.

2. Interactive CGI Programs

A typical interactive program performs a series of compatet interspersed
with interactions with the user. Each interaction requésisrmation using
HTTP’s GET or POST methods [15] and waits for the user’'s raspoAf-
ter the last interaction, the program produces the finallte$his section
demonstrates how programmers port interactive applicatio the Web, first
via conventional means and then in a more direct manner.

For concreteness, we focus on CGI script programming forrés¢ of
this paper, but these techniques apply to any Web technalagyerases the
control context between interactions with the user.

2.1. CONVENTIONAL CGI| PROGRAMS

Figure 1 presents a trivial interactive Scheme programrégests two num-
bers, adds them, and displays the result. The footnotedsbaxst only for
explanation purposes; they are not part of the program @oxtverting even
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;; prompt-read : String — Value

;; read a Scheme value

(define (prompt-read question ;; defines the functioprompt-read
(display question
(read))

;;main
(e,

(+ ‘ (prompt-read " Enter the first number to add:") ‘1

‘ (prompt-read " Enter the second number to add:") ‘9))

Figure 1. An Interactive Addition Program

this simple program to function as a Web script complicatescbde tremen-
dously. According to the CGI standard, every time the progsends an
HTML form to the consumer’s browser, the CGI program terntéisa\When
the user submits a response to the form, the server starG@hecript that
the form specified as its processor. That is, if an interagbrogram contains
asingleinput request, its equivalent CGlI script consists of twoesafe frag-
ments. The problem is, however, even more complex than #edause the
consumer may use the back-button to return to a page and rmsybrmait
the same or different answers. Worse, using the new windawtionality
to clone a browser, the consumer can submit two responsesitgla form
(more or less) simultaneously.

To accommodate these uses, a programmer must—at leasptoalbe—
turn an interactive program into a coroutine; the consunt@ysthe role of
the second coroutine. This is complicated by the consunadility to use
the back button, clone the window, or bookmark and returntipial times,
thus becoming not just a second coroutine but a third, fodift, or any
arbitrary number of coroutines all interacting with the gascript. One way
to accomplish this is to separate the program into sevesghiients, one per
interaction and one for the last step. When a fragment hashdi its task,
the execution stops. All information from one program fragrrequired by
some later fragment must be communicated explicitly. Adl thethods for
communicating with the next fragment marshal the data ingiriag and
transmit it in a hidden HTML field, in a cookie, or save it in efibn the
server.

Figure 2 shows the addition program converted into a CGI nanog
Because the original addition program contains two int&as, the cor-
responding CGI version consists of three fragments, rgnated into a
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;; produce-html : String Strindlistof Valug — void
;; effect: to write a CGI HTTP header and HTML Web form
(define (produce-html question mark free-valjies.) ;; body uninteresting

(defineFIRST-STOP first number done" )
(defineSECOND-STOPsecond number done")

(definebindings(get-binding}) ;; the name=value pairs submitted on this invocation;
;; access is viaxtract-bindings/single
;; main
(cond ;; each bracketed clause is a question-answer pair;
;; in this instance, all answer expressions are boxed.
[(empty-bindings? bindings user submitted no bindings

‘ (produce-html' Enter the first number to add:" FIRST-STOR()) ‘1]

[(string="7 (extract-binding/singlécontinue-at bindingg FIRST-STOP

;; ' continue-at is asymbo] a string optimized for equality

;; comparison

(produce-html' Enter the second number to add: " SECOND-STOP
(list (list ’ first-number (extract-binding/singléresponse bindingg))) 7]

[(string="7 (extract-binding/singlécontinue-at bindingg SECOND-STOP

(display (+ (string— number (extract-binding/singléfirst-number bindingg)
(string— number (extract-binding/singléresponse bindingg))) 3])

Figure 2. Scheme CGI Versions of Figure 1

single program via a conditional. The invocationgaft-bindingsextracts the
bindings from the Web form, which the CGI program then tesisthree

conditions:

1. If there are no bindings, the program starts from the begm It creates
a Web page with a question, a hidden field that specifies themation
point, and the list of values that are supposed to be hiddeheinVeb

page.

2. If the program can extradeIRST-STOFfor ’continue-at, then it was
invoked with a first input. It produces a second form and qsethe
consumer for another number.

3. Finally, if the program extractSECOND-STORor ’continue-at, it has
obtained both numbers and can produce the sum.

As the computation unfolds, all necessary values are pasgdatitly from
one stage to the next as in a bucket brigade.
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<?
function extract_bindinggnamg { ...}
function produce_htrr{squestion$mark $freevarg { 2> ...<? }

function display$ang { 7>
<HTML>
<BODY:>The answer is<?= $ans 2-.</BODY>
</HTML> <?}

$FIRST_STOR- " first number done";
$SECOND_STOR " second number done";

$stop= extract_binding' continue_at");
if (lisse($stop) {
produce_htn{l' Enter the first number to add:" , $FIRST_STOPFarray ());
} else if($stop=== $FIRST_STOP{
produce_htn{l' Enter the second number to add:",
$SECOND_STOP
array (" first_number" => extract_binding' response")));
} else if ($stop=== $SECOND_STOF{
displayextract_binding' first_number") + extract_binding' response"));
}

2>

Figure 3. PHP CGI Versions of Figure 1

Even PHP [7], a programming language designed for web sugipsuf-
fers from the same problems. Figure 3 shows the same addgrapno this
time written in PHP.

Clearly, the structure of the CGI program radically diffénsm that of the
original version—indeed, it is basically invertee-yet their behavior per se is
identical. The inverted structure of the second prograneiersary because
of the constraints of the CGI standard and the capabilitfethe browsers.
In particular, a consumer can create a “curried addesing the back button
to re-enter different values for the second argument. Ttuatson only gets
worse as the number of interactions increases. In genemaprogram may
loop, requesting an arbitrary number of inputs. This netates constructing

1 M. Jackson recognized a similar structural problem in thdye#970s. When COBOL
programs consume tree-shaped data in one file and produdtere tree-shaped form of
data in another file, it is best to think of the program as twatines. Since COBOL doesn’t
support coroutines, he inventguogram inversion [29], a technique for providing simple
coroutine-like procedures in programs that don’t suppochsforms of control.

2 A curried function accepts some prefix of its arguments afarme a new function that
accepts the remaining arguments.
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a single branch that handles many responses, remembesgrgjate of the
iteration and an unbounded number of intermediate values.

Performing this restructuring manually easily leads t@esr For exam-
ple, one of the authors renewed two Internet domain nametrations. The
penultimate page of the registration program indicated tiwe user should
wait for the server to finish processing the renewal requiiser a moment,
it automatically proceeded to the final page, confirmed thewal, and billed
the author’s credit card. Accidentally hitting the backtbatreturned to the
processing page, which billed the credit card again, rengwhe domain
names for a second year.

In principle, the CGI programs are systematically relatedhte “direct
style” interactive programs that use plain input and oufpirhitives. While
CGI programmers currently structure each script indepetigewve propose
that the software construction process should take adyanté this rela-
tionship. The following sections demonstrate how to auticaly transform
a direct-style program into a CGI program, with no interventfrom the
programmer. While the transformation we describe reliesidmas taken
from functional programming and compilers for functionahfjuages, it can
be used on programs written in languages that do not suppgrspecial
functional-programming constructs, as we will demonstrat

2.2. DIRECT-STYLE CGI| PROGRAMS

Software engineers have learned how to develop and maisggjuential in-
teractive programs. Hence, if they could develop intevagtrograms and use
them as CGI scripts, they could reuse the software engimgézgchniques for
interactive programs to develop Web programs.

Since CGI programs run in the context of a Web server, it issibbs
to write a custom server that allows CGI programs to behavéhasgh
they were interactive: it can provide CGI programs with mglementations
of primitives such adisplay or prompt-read, using a specialized version
of prompt-read that uses Schemetsll/cc construct to capture the current
control state as a continuation [40] vaiu&he server can associate this con-
tinuation with a new URL that accepts the inputs from a Welmfand then
store the continuation for later resumption.

When the consumer submits a response to this Web form, thesbro
issues a request for the URL associated with a continuafibis.request and
all future requests for the URL resume the continuation \iligh data from
the Web form. In particular, because a Scheme continuatonbe invoked

3 A continuation value can be thought of as a function that wherated captures the
current list of computations left to perform before the pang is complete, and when applied
performs them.
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an arbitrary number of times, the consumer can respond teime Web form
a multiple number of times and thus resume the script as affatesired.

Prior work [26, 35] implements this approach and demonestratis ad-
vantages. In addition to facilitating program constructithe modified Web
server yields superior speed for CGI scripts compared tersé\existing
methods.

Unfortunately, the approach has two severe problems., Rirséquires
a server written in a language with advanced control featsteh as con-
tinuations. Second, the URLs for continuations act as sgtersi references
to storage within the server. This results in a distributadogge collection
problem with no support from the browser.

In theory, garbage collectors only reclaim memory that play will never
affect the rest of the computation. In practice, many laggsgrovide weak
references [37]i(e.,references the collector ignores when determining reach-
ability) so programmers can allow the collector to reclajpace sooner. The
collector “proves” that values referred to only by weak refeces will never
be used again by adjusting all the remaining weak referetocesme default
value (e.gfalse or NULL) indicating the value is gone.

Similarly, the Web server treats the URL references to cmiions as
somewhat weak. They are weak in the sense that the serveregidim
space sooner than the referring URLs disappear by rediged¢hiose URL
references to some default value—a Web page indicatingahiénuation is
gone. The process differs from the usual notion of weak egiges by the
criteria for breaking off the references. Instead of watimtil only weak
references remain to be the trigger for elimination of comitions, the server
relies on another criterion: timeouts.

Unfortunately, timeouts don’t solve the problem. If a timéds too large,
the server consumes too much memory. If it is too short, tdserconsumers
to restart computations from the beginning too often. lbaisakes the con-
sumer depend on the reliability of the server, which mayaréstue to power
failures or software upgrades.

Several months of actual experience using the server foruareach
project's Web sites [1, 2] revealed that problems with tiotsomatter in
practice?

— One of the sites contains a workshop registration form withmeeout
of 24 hours. This sufficed for most respondents; a few, howéed
to request an extension due to a snow-storm that interfeitd tieir
Internet access. Unfortunately, because the garbagetmllead already

4 Also, because the generated URLs encode enough informatimtentify the instance
of the program, its continuation, and a random key, they @wddng for some email clients,
which mangled them. Some users reported problems copysyRis because of this.
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reclaimed the continuation, not even the site operatorccguhnt an
extension.

— On another occasion, one of the authors copied the first pageragted
by the registration program to a different file. Initial tiesf suggested
that the copied page functioned correctly, yet the pagepsibfunction-
ing a day later. The generated page had contained a link teeitend
page of a script (it should have re-started the script), sobilng only
manifested itself when the timeout expired and the contionawas
discarded.

3. Generating CGI Programs

The theoretical and practical problems with the serveetlagpproach forced
us to consider an alternative implementation techniquesifplify the pre-
sentation, we first demonstrate this technique on progrant®win a purely
functional subset of Scheme. In section 3.2, we extend uippart programs
with state and mutation, and in section 3.3 we show how toyaihyid same
technique to other languages without Scheme’s advanceectmivol.

3.1. FuncTIONAL CGIl PROGRAMS

Removing timeouts would eliminate many of the problems entered with
our custom Web server. If the server could send the conionstto the
clients, then the clients could decide how long to hold omithecontinuation,
eliminating the need for the server to cache the continoatemd enforce a
timeout policy. Accordingly, if we can marshal and unmaistwntinuations
into printable data, the server can send the marshalledhe@itions to clients
(in a hidden field on the Web page) and the clients can send énshailled
continuations back to the server.

We employ three well-known transformations to enable theveseto
marshal the continuations. While these transformationeewieveloped as
techniques for compiling functional programs, they can ppliad even to
languages lacking the advanced features of some functiamgliages, as we
will see in section 3.3.

Continuation Passing Style (CPSYyepresents a program in such a way that
at each point in its execution there is an explicit represtgnt of every-
thing still to be done before the program is complete [24panticular,
each function of the program now consumes one additionainaegt:
another function representing the continuation. In thygesta function
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that saves or manipulates continuations can simply reférisonew ar-
gument; in our case, a re-implementatiompmfmpt-read can turn its new
argument into a resumption point from which an external ipleker
can resume the program in response to a form submission.

Lambda lifting turns the resumption points into independent functions tha
can be moved to the top level, making them accessible to tde co
handling the next interaction [30].

Defunctionalization changes the representation of higher-order data, such
as closureand continuations, into a first-order form [38]. By choosing
portable concrete representations (in this case, vecigesan correctly
marshal these kinds of higher-order data. Using defunatination, the
script writes the continuation into a hidden field of a Welniaand uses
it later to restart its computation.

These three phases are part of a standard technique for laogfpinc-
tional languages ([24], [4]) first described by Reynolds|[&PS-converting,
lambda lifting, and defunctionalizing partitions a progranto separate inter-
active steps, so computation can halt conveniently betweem and small
changes then convert the program into a standard CGl script.

We explain the process with the trivial but illustrative exale from fig-
ure 1. The result of these three automated translation sgeghown in
figure 4. This interactive program requires one final stepdoome a CGl
program. The revision in figure 5 demonstrates the resulystesnatically
transforming the compiled version into a CGlI script. Thauteis structurally
almost identical to the hand-coded version of figure 2.

The details of the process are as follows. The first step pesla CPS-
converted version of the program. Here is our running exampl

(prompt-read-K' Enter the first number to add:"
;; lambda declares anonymous, first-class functions
(lambda (res))
(prompt-read-K' Enter the second number to add:"
(lambda (res?
(display (+ resl res2)))))

where

;; prompt-read-k :
;v String (Value— Value — Value
(define (prompt-read-k s k

(display )

(k (read)))

5 A closure can be thought of as an object with only one methpgly.
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(define-structclosure(code eny)
;; Closure= (make-closure Int Env
;» Env= (listof Valug

(definecO
(lambda () ;; the environment (in this case, empty)
(lambda (responsel ;; the argument
(prompt-read-K Enter the second number to add:"
(make-closura (list response))))))

(definecl
(lambda (responsell ;; the environment (in this case, holds
;; the previous argument)
(lambda (responsep ;; the argument
(display (+ responsel responspp)

:; the converted functions and continuations
(defineclosureg(vector c0 c1)

;; apply-closure : Closurglistof Valug@ * — Value
(define (apply-closure f. args)
(apply ;; supplies the arguments
(apply ;; supplies the environment
(vector-ref closureg(closure-code )
(closure-envY)

args))

;; prompt-read-k : String Closure> void
(define (prompt-read-k s k

(display S)

(apply-closure Kread)))

;> main
(prompt-read-K Enter the first number to add:" (make-closur® ’()))

Figure 4. The Compiled Version of Figure 1

The CPS converter must supply alternate implementationsifitives.
CPS-converted versions of higher-order primitives thaegt (or return) call-
backs must supply a continuation to their argument, sinee#fibacks may
contain resumption points. External modules that accepttion arguments
must be transformed as well.
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(define-struct closure(code eny)

(define (apply-closure f. args)
(apply ;; supplies the arguments
(apply ;; supplies the environment
(vector-ref closureg(closure-code )
(closure-envY)

args))

;; the converted functions and continuations
(defineclosures
(vector
(lambda () ;; the environment (in this case, empty)
(lambda (responsel ;; the argument
(prompt-read-K Enter the second number to add:"
(make-closura (list response)))))

(lambda (responsell ;; the environment (in this case, holds the
;; previous argument)
(lambda (responsep ;; the argument
(display (+ responsel responspp))

(define (prompt-read-k s k
(display s)

(apply-closure Kread)))
;; main
(prompt-read-K Enter the first number to add:" (make-closur® empty))

Figure 5. The CGI Version of Figure 4 (Compare with Figure 2)

Lambda lifting turns anonymous functions into globally defi functions.
It thus allows the compiled CGI program to resume a contionawith a call
to a global function. Each expression of the form

(lambda (args) (body) ...)
is replaced with

((lambda (free-vars
(lambda (args) (body) ...))
(free-vars)

where(free-vars is the list of free variables ifbody) .. .. This new function
is closed, so it can be safely lifted to the outermost lexscalpe.
For our running example, this step yields
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(defineclosurel
(lambda ()
(lambda (res))
(prompt-read-K' Enter ... second ...:"
(closure2 res)))))

(defineclosure2
(lambda (res))
(lambda (res?
(display (+ resl res3))))

(prompt-read-K' Enter ... first ...:" (closurel)

Using closurelandclosure2we can now run the program from different
resumption points, turning the original program into a mdradder just as
the back button on a Web browser does.

Figure 4 shows the result of the final compilation step, ngno¢élcon-
verting closures into structureapply-closureperforms function applications.
The step is necessary for two reasons. First, Web forms refestto a specific
resumption point (closure) within a program, but Web forras only contain
strings. A unique symbolic code, such as an index into a vextolosures,
satisfies this requirement. Second, some closures maywsuami interaction
with the consumer, which means that their environment mesnhrshalled
into strings for hidden fields and unmarshalled upon resiompSince all
closures have been converted into first-order closure tsires, a function
such asprompt-read can write a closure into the hidden field of a Web
form and the CGI program can read this closure and apply kckipally,
the code pointer of the continuation describes what sulbprogo invoke
next. The continuation’s environment captures any valgesiad by the next
subprogram instead of explicitly passing them in hidderd§el

Up to this point, the transformation produced a semanyicadjuivalent
program, so the result is a normal interactive program. Talpce a CGI
program, we replace two fragments of the defunctionalizezjfam. The
definition of prompt-read changes and now marshals the continuation into a
Web form, prompts the user with a form, and then exits. Thenrpabgram
changes to the text of figure 5. In other words, the progran d¢hiecks the
form bindings for the continuation fromrompt-read. If it exists, the contin-
uation is resumed via a closure application. If not, the gatmn starts from
the beginning.
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SECURITY

Recording the continuation in the client and retrievinghiréduces two se-
curity issues. First, malicious users can alter the coation, resulting in
unexpected behavior. Second, curious users can inspedotiiguation’s
free variables, possibly revealing confidential inforroati

Existing cryptographic solutions remedy both these pnoislevithout
introducing more than a fixed amount of server-side statgpefding the
marshalled continuation with a keyed hash [3] would alloe timmarshaller
on the server to verify the continuation’s integrity. Enating the contin-
uation using a block cipher with a random key kept only on thever
would prevent users from inspecting the continuation. Tstesn could gen-
erate the necessary keys on a system wide or per-progrars, laasiding
excess server-side state. One mode of the proposed Advdresgption
Standard [13] simultaneously does block encryption as aslimessage
authentication in one (highly parallelizable) operation.

A drawback of this approach is that once a server starts asgice us-
ing a particular secret encryption key, it cannot ever stogepting sessions
encrypted with that key without invalidating them. This flaauld make the
security penalty for a compromised secret key worse.

3.2. COMPILING STATEFUL CGIl PROGRAMS

(definebox-0(box 0))

(definebox-1(box 0))

;;main

(begin
(set-box! box-0(prompt-read " Enter the first number to add: "))
(set-box! box-1(prompt-read " Enter the second number to add: "))
(show (+ (unbox box-0 (unbox box-1))))

Figure 6. A Stateful Interactive Program

While generating CGI programs from interactive functionqabgrams is
almost a routine task with functional compilation techmigtinternaf as-
signments in the interactive program pose an interestiradjatge. The first
problem is due to plain variable assignmentet in Scheme—because
lambda lifting assumes that copying bindings is acceptabke must there-
fore eliminate all assignment statements with a transftonahat replaces
mutable variables by boxésassignments to variables with assignments to

6 We ignore modifications of data iexternal entities, say the server file system or a
database, because this topic is well-understood.
7 Boxes are Scheme’s mutable cells.

paper.tex; 17/05/2004; 15:34; p.14

www.manaraa.com



(define-structclosure(code eny)
;; Closure= (make-closure Int Env
;; Env= (listof Valug

;; apply-closure : Closurélistof Valug « — Value
(defineapply-closure...) ; as in figure 4
(defineclosures(vector . . .))

;; similar to figure 5
(define(prompt-read-k s k
(produce-html gclosure-code k(closure-env )

;; added:

;; produce-html : String Strindlistof Valug — void

;; effect: to write a CGlI HTTP header and HTML Web form
;; including a cookie containinthe-boxes

(define(produce-html question mark free-valjies. (write-boxes-to-cookie the-bo3es.)

(definebindings(get-binding3)

;; the-boxes (vectorof Valug, the current store
(definethe-boxes
(if (empty-bindings? bindings
(initialize-the-boxeps
(read-boxes-from-cookip

;; initialize-the-boxes —— (vectorof Valug
;; create a new store plus a sequence number

;; read-boxes-from-cookie—» (vectorof Valug
;; turn a cookie into a store, check sequence number usingkdile

;; write-boxes-to-cookie (vectorof Valug— void
;; turn a store into a cookie, increment sequence numbegusiack file

;;main
(cond[(empty-bindings? bindinys
(apply-closureglmake-closur® empty) (box 0))]
[else
(apply-closure
(make-closure
(string— number (extract-bindings/singlécontinue-at binding9)
(create-env-from-string@xtract-bindings/singléenv bindingsg))
(extract-binding/singléresponse binding9)])

Figure 7. CGI Version of Figure 6
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boxes, and references to such variables with dereferencesxes. Fur-
thermore, the CGI program generator must know all boxesttiebriginal
program uses (or implicitly introduces). Figure 6 contaars imperative
version of our example converted to use Scheme boxes.

The second problem is much more severe. Semantically, ressigts
introduce an additional element: the store. Roughly spegkihe store is
threaded through the program, independently of the costeaé. In particu-
lar, when a Scheme program invokes the same continuati@e fitie store of
the second invocation reflects all the store updates sirecér#t invocation.
Modifications of the store survive continuation capture envdcation.

A consumer who invokes the same continuation twice via a Videim f
should also see that the store modifications of the first ition survive
when the second invocation is launched. This requiremepliésithat a CGl
program must deal with the store differently than with thegiemment of a
closure. In particular, it is wrong to place the current stmto a hidden field
of a Web form. After all, if the consumer cloned the page, ttenvser would
also copy the store, and two submissions of the form wouldnsiLihe same
store twice.

Still, we must choose where to remember the current storeywleesus-
pend a CGI program. We could either place the store on thesenon the
client machine. As we already know from the discussion offlsement
of continuations, the server is ill-suited for this purp8sdence, we must
turn the store into a datum that is sent to, and then storetherconsumer’s
machine—but not inside the Web page.

This reasoning leaves us with the single choice of turnirgdtore into
a browser “cookie” and placing this marshalled form into twsumer’s
cookie file. Unlike hidden fields, they are independent framy particular
page, so changing continuations via the back button doeafiect the store.
Figure 7 sketches the cookie-based translation of figure 6.

Although this naive cookie solution sounds straightfodyat has three
imperfections. The first one, which is minor, is the resimictthat Web
browsers have a limit of 80kB of storage for cookies per hashe [32]. In
principle, a limit like this is no different than a limit on &p space for a con-
ventional program, but the small size of the limit will be ptematic for some
programs. As security research improves, we expect coakis®me other
mechanism to mature enough to lift these simplistic retsoris. A second
minor problem is that modern browsers include many cookéagement
facilities that expect Web sites to use cookies in very rtitary ways,
and some users disable cookies entirely as a security anacgrmeasure.
This problem will presumably be minor, since users can asaeryable basic

8 Avoiding server-side state also facilitates replicatitig tserver across several ma-
chines. Although outside the scope of this paper, repboatnproves industrial servers’ load
balancing and fault resistance.

paper.tex; 17/05/2004; 15:34; p.16

www.manaraa.com



cookie management and refrain from manipulating cookiéeiy know they
are interacting with a program that requires them. The thindre impor-
tant one arises because browsers transmit cookies at tleetiey submit
the Web request. If the user submits simultaneous requibstssecond re-
quest processed by the server will contain an out-of-datkieo A naive
implementation may thus lose updates to the store.

Our solution is to include a sequence number [36] with thekmpetore.
A sequence number allows the CGI program to detect race tonsli More
specifically, the CGI stub code stores a sequence numbeftr eriginal
invocation (“session”) of a CGI program and uses this seggierumber to
manage access to the store. If it ever obtains a store withuesee number
less than the current one, it asks the consumer to resubmiVéb form.
Unfortunately, the use of sequence numbers re-introducesserver side
storage management problem, though because the storadgefoeaumbers
are small, the problem is negligible.

In summary, the inventors of browsers created two mechanifon
threading information through Web computations. The twaha@isms are
analogous to the two ways information flows in a programmiaggliage
semantics: stores that accumulate over time and contonsatvith envi-
ronments that grow and shrink. Our CGI compiler can theeefose the
browsers’ mechanisms to implement the separate storaggéreatents for
continuations and stores in a systematic manner.

3.3. APPLYING THE TECHNIQUE TOOTHER LANGUAGES

The technique described in section 3.1 borrows heavily fteshniques
used to compile functional languages to machine code, bes dot rely
on the source or target language having any unusual featdifesctional
programming languages: in particular, it does not requa#/cc or other
continuation-manipulation primitives and it does not riegjglosures or first-
class functions to be available; it requires only that theydh language
provide basic functions or a goto-like construct.

This may seem strange given that all phases of our technigiee to
higher-order functions and at least CPS-conversion apgdeaely on them.
However, while the output of the compiler shown in figure 4suadew fea-
tures of functional languages, we can eliminate those usegemonstrate
this, we have provided an example of the same output as ittragiear in C
in figure 8.

Notice the similarity between figure 4 and figure 8. Other thaslightly
more verbose syntax and a different format for the functistmsed in the
closure table (the Scheme version using curried enviromsndéime C version
taking environment and arguments at once) the programsgyraesemble
one another.
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#include <stdio.h>
typedef struct { int code void *env; } closure;
typedef void (xclosuretypg(void x, void x);

closurexmake_closurg@nt, void x);

void cO(void *, void *); void c1(void x, void x);
void apply_closuréclosurex, void x);

void prompt_read_{char x, closurex);

closurexmake_closur@nt code void xeny) {
closurexk = (closurex) malloc(sizeofclosurg);
k— code= code k— env= eny,
return k;

void cO(void xeny, void xresponsejl{
closurexk = make_closur@, responsel;
prompt_read_K Enter the second number to add: ", K);

void cl(void xresponse;lvoid xresponsep{
printf(" %d\n", (int) responseX- (int) responsep

}

closuretype closurgs= {c0O,c1};
void apply_closurdclosurexf, void xargs) {
(x(closure$f— codq))(f— eny arg9);

}

void prompt_read_{char xs, closurexk) {
char inpuf 10];
int i
printf(" %s", S);
fgets(input,10,stdin);
i = atoi(input);
apply_closurék,(void «) i);
}

int main() {
closurexk = make_closur@®, (void x) 0);
prompt_read_K Enter the first number to add: ", K);
return O;

}

Figure 8. The C version of Figure 4
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void apply_closuréclosurexclo, void xargs) {
int code= clo— code
void xenv= clo— eny,
free(clo);
(x(closure$codq))(envargs);

}

Figure 9. Modification of Figure 8 to Reclaim Continuation Frame Megnor

MEMORY MANAGEMENT

Figure 8 mirrors figure 4 closely, but has one important défee: be-
cause C requires programmers to manage memory manuallg 8htheme
reclaims memory automatically, the memory allocated farsotes using
make_closurén the C program is never reclaimed. This is easy to fix: since
closures are only ever introduced to this program by the C&ersion
phase and are never live after their first use, we can simply them when
we apply them by adding a call fee to apply_closureas shown in figure 9.
Freeing closures at this point will work with any C progranmyaled with
our compiler since source C programs will never create filsss closures of
their own.

ELIMINATING malloc

The previous section demonstrated that the memory our demgdiocates
for continuation frames can be freed reliably, but prograrsnconcerned
with efficiency may object to using the heavyweigiilloc andfree method

of allocating closures for something as fundamental as giagastack
frames.malloc is a very slow procedure compared to a stack pushfased
is slow compared to a stack pop, so large programs mightrsyriéatly from

using them. Happily, since allocation and deallocationasitimuations in this
program (and any program generated from C source usinggttimtque) will

occur in a strict stack, we can rewriteake_closuréo avoid usingnalloc and

free entirely, instead usingushandpop (figure 10).

ELIMINATING STACK-BASED MEMORY LEAKS

Unlike Scheme, C is not properly tail-recursive [11], memnthat when a
function calls another function as the last operation ifqrens, such ag0
does in figure 8. C does not reclaim the memory allocated tstdtsk frame
until the function it called in tail position returns, so inmetinstance o€0 its
stack frame will not be collected unfifrompt_read_keturns, even though in
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int curr;
closure stackMAX_STACK_SIZE

closurexpusH(int code void xeny) {
closurexret = &staclcurr];

ret.code= code
ret.env = eny

++curr;
return ret;

}

void pop() {
——curr;

}

Figure 10. Modification of Figure 9 for Faster Stack Behavior

principle that memory contributes nothing to the compotatftercO calls
prompt_read_k

In many C programs following normal C programming stylesthimita-
tion does not pose a serious problem; C programmers simoligl amaking
long chains of tail-calls. However, the efficiency of con@tion-passing style
relies on efficient tail calls, so we have yet another menmrelgtted problem
to solve.

Fortunately, there are many ready solutions. The easieStwould be
to add two additional global variableslosurexclo_regandvoid xargs_reg
rewrite all continuation functions to be labelled code segts, and usgoto
instead of tail calls entirely, maintaining a stack only winecessary to deter-
mine where a futurgoto will lead. But this technique, which in fact takes the
program most of the way to assembly code, still uses one sbatesophis-
ticated language feature: calculated jumps (function teasnin C, dynamic
dispatch in object-oriented languages). We can eliminaén ¢hose using
simple techniques.

One such simple technique is calledmpolining® In this method, rather
than callingapply_closurairectly, each closure allows an outer “trampoline”
loop sitting at the bottom of the stack to do so. To implemeapolining,
we would again addlosurexclo_regvoid xargs_reg Then, we would rewrite

9 We choose trampolines here because they are easy to implemerhave reasonable
performance characteristics. Those interested in imphtimg a direct-style CGl compiler for
C should see [6] for an alternative technique that reusek $tames as live memory.
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void prompt_read_{char «str, closurexk) {
char inpuf 10];

/x ...other code as before/

i = atoi(input);
clo_reg=Kk;

args_reg= (void x) input,
return ;

}
int main() {

/% ...as before . .x/

while (1) { apply_closuréclo_reg args_reg; }
}

Figure 11. Using Trampolining to Avoid Stack Explosion

each call taapply_closureas we have witlprompt_read_kand augment our
main function to finish with a trampoline loop, as shown in fegy@1.

With that, we can finally eliminate all our memory difficui@nd have an
automatically-restructured C program compile to an efficexecutable that
only needs boilerplate as in figure 5 to be a full-fledged C@fpam.

ELIMINATING FUNCTION POINTERS

We used the C example above to make the argument that ourdeehmould
work with any language that supported functions, but in #éeample we
made use of C function pointers, a language feature speaiffc. tWhile
languages that have no provision for any kind of calculatedy €.g, func-
tion pointers, closures, or objects) are rare, our tectaidoes not require
calculated jumps at all. To eliminate them from our C example could
simply mergeapply_closureand theclosurestable into a single function:

void apply_closurgclosurexclo, void xargs) {
switch (clo— codg {
case0: cO(clo— eny args); break;
casel: cl(clo— eny, args); break;

}
}
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That modification would eliminate all uses of function peirst making the
code entirely free of calculated jumps; translation to otlaguages or
assembly code from this point is straightforward.

TRANSLATION PHASES

The output, then, can be expressed in languages withouidanat program-
ming features. The translation phases can also be applladdoages that do
not support those features: though our intermediate phmaks heavy use of
higher-order functions, the intermediate representatibiine program being
transformed does not need to be directly executable. S@ wertransform-
ing C or another language without closures, the CPS-coiovephase could
produce its output in C augmented with closures, knowingyekiary closure
we introduced in this phase would be eliminated in the ddfanalization
phase thus making the compiler’s final output a legal C progr@ he idea
that a CPS transformation followed by closure conversiamida lifting
and defunctionalization can be combined into a simplersfiamation that
has the same effect even in languages that do not providereksvas first
noticed in [18].)

4. Developing CGI Scripts

Developing a conventional CGI program in standard progrargrenviron-
ments is difficult. To debug the program properly, the depefashould run
the program as a CGlI script and interact with it through a ls@wThis is,
however, a poor interaction environment. Instead of a prep®r message,
the programmer sees responses such as

Internal Server Error....Mre information about this

error may be available in the server error |og.

The server’s error log contains a corresponding report:

Premature end of script headers
followed by the name of the program. The programmer can ifrfan this
that the CGI program didn’t output a valid response beformiteating, but
little more.

Our compilation process introduces the additional probieat the code
that is executed as a CGI script is not the direct-style chdethe program-
mer wrote. Instead, the programmer’s code is first transéatand then run
under the server’s control.

We can overcome both problems with a minor modification of ex-
isting programming environments. The idea is to provide tmaly that
re-implements primitives such ggompt-read so that the execution of the
direct-style program functions as if the CGI script were.rimparticular, the
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Figure 12. CGI Error Reporting

primitive communicates the given Web page to a browser, hadbtowser
communicates the submission of a Web form to these prinsitieirther-
more, the new library keeps track of the continuationgrompt-read so that
the developer can truly simulate a consumer’s actions obrbwser.

To demonstrate this idea, we wrote a library (technically,Teach-
pack [16]) of interaction functions for DrScheme, our p@mming envi-
ronment [16] for Scheme. The re-implement@@dmpt-read primitive uses
a more general primitive that accepts HTML pages (with fgrnitsgrabs
the current continuation, stores it, and manages the conwmation with
the browser. By switching Teachpacks, legacy software oaneither as a
command line program or as a Web application.

All of DrScheme’s tools are now available to the developerao€Gl
script. For example, DrScheme’s error reporting works prop Suppose the
developer forgets to deal with illegal inputs explicitlycamstead relies on
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Figure 13. CGI Stepping

Scheme’s primitives to read the submitted strings (all Weduis are strings)
as numbers. Then the program raises an exception for ithéadrinputs, and
DrScheme highlights the place where the program raised xtbepion as
if the program were an ordinary interactive program. Seerédl? for an
illustration.

Consider the more complex example of DrScheme’s single-debug-
ger [10]. The tool reduces Scheme programs according torsekeeduction
semantics [14]. A developer may wish to use the stepper termsitehd the
actions on a step-by-step basis. The stepper already ascéamlibrary
calls as atomic function calls, so that it properly displagmsitions of CGI
programs—including input and output steps. See figure 1arfialustration
of this capability.

In general, our methodology for developing CGI programsperthe use
of conventional software engineering methods for intévacprograms and
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the use of systematically enriched programming envirorimeéiWe believe
that our ideas thus bring rigorous order to the world of CGigsamming.

5. Implementation Status

We first developed a prototype CGI compiler that operatesara 8cheme
programs. The compiler accepted a single expression,&lypia letrec ex-
pression prefixed with (uncompiled) PLT Scheme library ffjtions. We
used the prototype to test the feasibility of the compilethwa number of
examples, plus one full-fledged application: the teachsslienent dialog for
our TeachScheme! outreach project.

Our effort to turn the prototype compiler into a full-fledgedmpiler for
all of MzScheme [19] is ongoing.

MzScheme extends the SchemeRsS [31] standard with several fea-
tures, including continuation marks [10], units [21], nmigi[17, 23], and
modules [20]. Many of these extensions, including units iaixins, are al-
ready compiled to a core-based language by MzScheme'’s front end. Others,
notably modules, are not, since there is no equivalent fmtn the core\-
based language. Accordingly, our compiler must be able 16 @Rwvert these
forms, without re-implementing them. In general, this i$ possible, but we
have been able to extend MzScheme in simple ways to cope With its
extensions.

MODULES

Once MzScheme’s front end has processed a module, that encolsists of

a series of function definitions and expressions plus datters about which
other modules it imports and which identifiers it exports tbes modules.

To CPS-convert it, we transform the module so that it expons additional
function: init. This new function accepts no arguments and performs all of
the initialization code from the original module, includirtalling theinit
functions from imported modules. Since the transformed ut®anly has
function definitions, we can CPS convert the entire modul€B$ converting
each definitiort? To make this transformation work properly, we had to add
a new renaming mechanism to the module system.

10 This technique is sufficient for most languages, but sinaecompiler is written for
Scheme, we go further. In Scheme, functions definitions ase ljke variable definitions
initially bound to aA expression, and recursive binding constructs are sengdlytidentical to
non-recursive binders, initialized to a dummy value, fokal by a series of assignments [31].
Accordingly, our compiler pushes the initializations df@flthe module’s definitions into the
init function and then CPS converts it.
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OPERATING SYSTEM RESOURCES

MzScheme lets programs access several operating systearces such as
TCP/IP connections and files. Whenpempt-read occurs, since the Web
server will terminate MzScheme and thus force it to relisbuthese re-
sources, we must decide what will happen to them. While welaviike to
preserve them so that programmers could treat Web interaes any other
kind of user interaction, this is not possible in the geneeale. For example,
the resources could be a network connection to an inteeptiocess on an-
other machine that could time out. One can imagine migrdtiege resources
to the client machine and back, but rather than try that, weted implement
the simpler strategy of just releasing all such resources.

Since programs running under the compiler terminate theuregs when
prompt-read is called, the program development environment must be able
to mimic this behavior. We use MzScheme’s custodians [22¢ltse all
open TCP/IP ports and files (as well as all of the other OS ressuthat
the program may have allocated).

THREADS

While as discussed in the previous section we cannot presgperating
system resources across Web interaction lines in genesam preserve
one particular operating system resource: threads of aoHtiMzScheme
supports preemptive threads, created by ttimead primitive. It accepts a
function of no arguments, creates a new thread and appédsiction on the
new thread. As with other features related to operatingesysesources, this
feature poses a problem for the CGI compiler: a program cstadd several
threads and then request user input, which due to CGI restricshuts down
the entire application including all threads.

To cope with this, we could take the default strategy of tlewijmus section
and shut down all threads. For new applications written ifpatly for the
Web, that constraint probably would not be a too burdensoruost of the
time. However, stopping threads seems like a big problemrfaintainers
of legacy software, so we have decided to allow threads teapi remain
alive across Web interactions by stopping and marshallirpr@ads when a
prompt-read occurs, and resuming all running threads when the computati
resumes.

To implement this feature, we use a single assignable cethpead. The
CGI compiler redefines tharead primitive to allocate a new cell. At each
application of a continuation, the transformed programaiesl the cell for

11 Technically, the MzScheme interpreter manages thread¥f itsthout relying on the
operating system’s underlying thread-related featuresvé¥er, the technique for managing
threads would remain unchanged in either case.
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the current thread with the new continuation. Whemamnpt-read occurs, we
interrupt each running thread, gather the continuatioamfall of the cells,
and marshal all of them into the Web page that we send to thvesiero

Itis worth noting that the resulting datum could potenyidle quite large if
the program has many threads active when it gatispt-read. Also, a legacy
program might be using threads while requesting user inpetifically for
the speedup that comes with parallelism, a speedup we wid tadeny it.
However, our system imposes no constraints that aren’réméo the prob-
lem, and preserves the semantics of threads so developegsiickly migrate
a program to the Web and then incrementally improve its perémce.

CONTINUATION FRAMES

The transformation outlined in the paper creates a sepacatiinuation ap-
plication for each subexpression in the program, even thiosewill never
be split across arompt-read. This significantly increases the size of the
compiled program and also increases the size of the conitmsasent to
the browser.

In principle, our compiler does not need to create a sepamatdinua-
tion for each subexpression, sinm@mpt-read only happens at well-defined
points in the evaluation. Instead, we could identify thechions that are
guaranteed not to catlrompt-read during their dynamic extent. The bodies
of such functions do not have to be converted to CPS formesgither the
entire function will appear in the continuation or the fuootwill not appear
in the continuation at all.

Unfortunately, this optimization interferes with our &gy for supporting
multithreaded programs described in the previous sulsediecause that
strategy requires that we be able to interrupt any threaa airlaitrary point
and retrieve its current continuation, which will not gealr be available
if we employ this optimization. Negotiating this conflict & important
direction in our ongoing research.

CALLBACKS FROM PRIMITIVES

Many of MzScheme’s primitive functions are implemented ina8 part of
MzScheme’s runtime system. Several of these C languageguoes invoke
arguments that are Scheme procedures, triggering a chlftiaa the C code
to Scheme code. The Scheme standard includes a few of thasgf¢r-each,
etc) and MzScheme includes several maged(ap, ormap, user-defined
ports, etc).

In order to CPS convert programs that use those primitivessnust CPS
convert the primitives themselves. Since our compiler aoypsumes and
produces Scheme, we have to either re-implement thesetpasior build a
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CPS converter for C code. We have chosen to re-implementrimitiges in
Scheme. As an example, Schemeap is replaced with this function:

(define(map/k f I R
(let loop ([1'1] [k K])
(cond
[(null? 1) (k)]
[else(f (car )
(lambda (hd)
(loop
(cdr 1)
(lambda (tl)

(k (cons hd ))))1))

MARSHALLING

MzScheme introduces many new kinds of values: hash-tabtas;tures,
custodians [22], and parameters, to name a few. MzSchen rduepro-
vide marshalling and unmarshallinge(, saving values to disk) for most of
these values so, as part of our compiler, we need to providshaking and
unmarshalling. For many of the valuesg, hash-tables, MzScheme already
supports enough operations to implement marshalling andatshalling. For
others,e.g, custodians, our compiler must replace all of the operatmmthe
value with new versions of the primitives that record enougbrmation to
be able to save the values to disk and restore them.

6. Related Work

Programmers building imperative-style programs in pureigctional lan-
guages use a technique based on the mathematical theory mddsio
Hughes [27], in developing his theory of arrows, a geneadilin of monads,
describes how to implement interactive CGI programs usimgiss. His key
insight is to provide a mechanism that at each interactiomtgarns the
current continuation into a datum for the Web page. This ireguan oper-
ation on continuations not supported by most languages auithinuations.
Similarly, Queinnec [35] advocates usiegll/cc to implement interactions
between Web servers and consumers. His method requiresatigication
of a server that can store continuations.

Our research started as an exploration of these two puiblicat\We diag-
nosed the short-comings of these approaches, namelyhthatrow solution
deals with stores improperly and the time-outs, based oexpugrience, limit
the utility of continuation objects in a Web server. Our s$ioln addresses both

paper.tex; 17/05/2004; 15:34; p.28

www.manaraa.com



problems and overcomes these difficulties. Furthermore wmrk demon-
strates that these ideas are applicable to all kinds of kEgegi not only
functional languages supporting first-class continuation

Graham [25] claims that the success of his Viaweb company, Y-
hoo! Store, is due in part to the methodical use of contimmagiassing-style
to construct Web applications. If this technique provegptutlwhen done
manually, using our automated translation must be eveeibéte does not
explain how his company dealt with mutable stores.

At first glance, a reader might suspect that the FastCGl pobtfB4]
solves the problems of engineering CGI programs by expliemiting for a
request in the middle of the program. The FastCGlI proto@tsa separate
process on the server for each Web program. The server fdsngarccessive
requests to the FastCGIl program, which sends the respomrséstd the
server. Since these programs wait for a request, it appedisstathat the
programmer could do more than the typical looping over rstgiat the start
of the program. One could attempt to construct an interagiixogram by
waiting for the next request at different points in the comagion. However,
this approach only allows the user to proceed forward thinoegch interac-
tion. Cloning windows or using the back button will send tbeni data to the
wrong point, causing the FastCGI program to either not finid$iexpected
from the correct form or, even worse, to misinterpret fielisttaccidentally
coincide.

The <bi gwi g> system [5, 9] uses this idea of a thread waiting for re-
guests at different points in the code to transparentlygmuesprogram state
across interactions. Since previous pages representthgrofjram state are
no longer accessible, users must restart transactionsrectmistakes. Their
experience indicates that users complained about thidiigab use the back
button or the browser’s page history.

Java servlets [12] address performance issues in a manméarsio
FastCGl. Aside from the object-oriented interface andhliles for construct-
ing HTTP response headers, servlets provide the same pragirey model
as standard CGI. Each incoming request invokds@t or doPost method
in the servlet from the beginning, leaving the task of réatpthe appropri-
ate control context to the programmer. It may appear thafetsrcan avoid
moving the store into cookies by storing values in the sémigect’s fields.
The Web server, however, has the option of garbage colteetiserviet and
creating a new one at any time. The server also has the optiomgoating
the servlet to another virtual machine, so data may not egsidtatic fields
between interactions either. Thiet pSessi on class provides a mechanism
for maintaining a dictionary from strings to Objects on tleever and stor-
ing a reference to the dictionary in a URL, cookie, or Secureksts Layer
session. All the problems with server-side state consummegory or timing
out remain.
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The Java Platform Debugger Architecture [41] enables Javaldpment
environments [8, 28, 42] to attach remotely to the JVM that\¥eb server
uses to run servlets. Although this reuses existing devedop environments
to debug Web applications by setting break points and disgiathe source
of exceptions, it does not assist the programmer with thealated structure
of interactive servlets.

Thiemann [43] used Hughes’s ideas as a starting point andda® a
monad-based library for constructing Web dialogs. His naisnzke care of
the “compilation” of Web scripts into a suitable continaettiform. Working
with Haskell, Thiemann can now use Haskell's type systenhézk the natu-
ral communication invariants between the various portafres\WWeb program.
Haskell, however, is also a problem because Thiemann muostranodate
effects (interactions with file systems, data bases, eteninnnatural man-
ner. Specifically, for each interaction, his CGlI scripts sgeexecuted from
the beginning to the current point of interaction. Even tjtouhis avoids
the re-execution of effects, it is indicative of the probkemith Thiemann’s
approach.

7. Conclusion

Our paper introduces an automated translation that impiésmen interac-
tive programming model for Web applications. By helping gregrammer
avoid having to manually save and restore control state dxtwnterac-
tions, the system not only eases the initial software deveént, but also
facilitates maintenance, since the CGI programming model matches the
traditional interactive programming model. The matcheddeis also en-
sures that software engineers can still use familiar prognang tools when
doing Web development. As an example, the paper demorsstnate our
technique allows developers to continue using convernttipnagramming
environments.

The automated translation produces CGIl-compliant prograsing CPS
conversion, box conversion, lambda lifting and defunaiaation, followed
by the generation of a little administrative stub code. Thedlawnderstood
formal nature of the first four steps justifies a high degreeonifidence in the
translation process. Furthermore, we can implement tmassformations for
almost any modern high- or low-level language by eithergisie language’s
built-in language features for an executable intermedigpeesentation or by
introducing and immediately eliminating closures. Mostairagingly, our
work shows that it is possible to implement our transforarain such a way
that we can preserve most of the semantics of a full-featpregramming
language while adding unrestricted ability to interacthwiveb users.
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One important question we leave unresolved is how to decidehwalues
should go in the store and which should go in the environnfemtinstance,
in C, loops usually exit when an index variable is destr@jivupdated to a
particular value, but C programmers might be surprised td firat return-
ing to the middle of a loop does not reset the loop counter ¢ovilue it
previously held. Fundamentally, the Web permits new olzdegms on the
behavior of the program that were not possible before. Gunly, a loop
implemented withfor in C that imperatively updates an index variable and
a loop implemented with a recursive function if?Gire indistinguishable in
the traditional interactive model, but are distinguisiealsith Web programs.
Still, our research strongly suggests that our techniquebeaused as it is to
automatically restructure programs written in a wide vigriagf languages.
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